Comparison of three time-series models for predicting campylobacteriosis risk.

نویسندگان

  • J Weisent
  • W Seaver
  • A Odoi
  • B Rohrbach
چکیده

Three time-series models (regression, decomposition, and Box-Jenkins autoregressive integrated moving averages) were applied to national surveillance data for campylobacteriosis with the goal of disease forecasting in three US states. Datasets spanned 1998-2007 for Minnesota and Oregon, and 1999-2007 for Georgia. Year 2008 was used to validate model results. Mean absolute percent error, mean square error and coefficient of determination (R2) were the main evaluation fit statistics. Results showed that decomposition best captured the temporal patterns in disease risk. Training dataset R2 values were 72.2%, 76.3% and 89.9% and validation year R2 values were 66.2%, 52.6% and 79.9% respectively for Georgia, Oregon and Minnesota. All three techniques could be utilized to predict monthly risk of infection for Campylobacter sp. However, the decomposition model provided the fastest, most accurate, user-friendly method. Use of this model can assist public health personnel in predicting epidemics and developing disease intervention strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The importance of climatic factors and outliers in predicting regional monthly campylobacteriosis risk in Georgia, USA

Incidence of Campylobacter infection exhibits a strong seasonal component and regional variations in temperate climate zones. Forecasting the risk of infection regionally may provide clues to identify sources of transmission affected by temperature and precipitation. The objectives of this study were to (1) assess temporal patterns and differences in campylobacteriosis risk among nine climatic ...

متن کامل

Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models

In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...

متن کامل

پیش‌بینی تعداد موارد بروسلوز براساس پارامترهای اقلیمی با استفاده از روش‌های داده کاوی شبکه‌های عصبی مصنوعی پرسپترون چند لایه، تابع پایه شعاعی و نزدیک‌ترین همسایگی

Background and Objectives: Identification of statistical models has a great impact on early and accurate detection of outbreaks of infectious diseases and timely warning in health surveillance. This study evaluated and compared the performance of the three data mining techniques in time series prediction of brucellosis.   Methods: In this time series, the data of the human brucellosis cases a...

متن کامل

Overview and Comparison of Short-term Interval Models for Financial Time Series Forecasting

  In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...

متن کامل

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epidemiology and infection

دوره 138 6  شماره 

صفحات  -

تاریخ انتشار 2010